Friday 25 August 2017

Variação Média Móvel Automotiva


8.3 Modelos Autoregressivos Em um modelo de regressão múltipla, projetamos a variável de interesse usando uma combinação linear de preditores. Em um modelo de autorregressão, projetamos a variável de interesse usando uma combinação linear de valores passados ​​da variável. O termo regressão automática indica que é uma regressão da variável contra si mesma. Assim, um modelo autorregressivo de ordem p pode ser escrito como onde c é uma constante e et é ruído branco. Isto é como uma regressão múltipla, mas com valores defasados ​​de yt como preditores. Referimo-nos a isto como um modelo AR (p). Modelos auto-regressivos são notavelmente flexíveis no manuseio de uma ampla gama de diferentes padrões de séries temporais. As duas séries na Figura 8.5 mostram séries de um modelo AR (1) e um modelo AR (2). Alterando os parâmetros phi1, dots, phip resulta em diferentes padrões de séries temporais. A variância do termo de erro e só mudará a escala da série, não os padrões. Figura 8.5: Dois exemplos de dados de modelos autorregressivos com diferentes parâmetros. Esquerda: AR (1) com yt 18 -0,8y et. Direita: AR (2) com yt 8 ​​1,3y -0,7y et. Em ambos os casos, et é normalmente distribuído ruído branco com média zero e variância um. Para um modelo AR (1): Quando phi10, yt é equivalente a ruído branco. Quando phi11 e c0, yt é equivalente a uma caminhada aleatória. Quando phi11 e cne0, yt é equivalente a uma caminhada aleatória com drift Quando ph1lt0, yt tende a oscilar entre valores positivos e negativos. Normalmente, restringimos modelos autorregressivos a dados estacionários e, em seguida, algumas restrições sobre os valores dos parâmetros são necessárias. Para um modelo AR (1): -1 lt phi1 lt 1. Para um modelo AR (2): -1 lt phi2 lt 1, phi1phi2 lt 1, phi2-phi1 lt 1. Quando pge3 as restrições são muito mais complicadas. R cuida dessas restrições ao estimar um modelo.2.1 Modelos de média móvel (modelos MA) Modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos auto-regressivos ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt desviar N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel da 1ª ordem, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se sinais negativos ou positivos foram usados ​​para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades Teóricas de uma Série de Tempo com um Modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observamos que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não nulas são: Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). O gráfico de série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, a ACF da amostra não corresponde exactamente ao padrão teórico. ACF para Modelos Gerais MA (q) Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. Para satisfazer uma restrição teórica chamada invertibilidade. Restringimos modelos MA (1) para ter valores com valor absoluto menor que 1. No exemplo dado, 1 0,5 será um valor de parâmetro permitido, enquanto 1 10,5 2 não. Invertibilidade de modelos MA Um modelo MA é dito ser inversível se for algébrica equivalente a um modelo de ordem infinita convergente. Por convergência, queremos dizer que os coeficientes AR diminuem para 0 à medida que avançamos no tempo. Invertibilidade é uma restrição programada em séries temporais de software utilizado para estimar os coeficientes de modelos com MA termos. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Teoria Avançada Nota. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo invertible. A condição necessária para a invertibilidade é que os coeficientes têm valores tais que a equação 1- 1 y-. - q y q 0 tem soluções para y que caem fora do círculo unitário. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10w t. 7w t-1. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0.7), lag. max10) 10 lags de ACF para MA (1) com theta1 0.7 lags0: 10 cria uma variável chamada lags que varia de 0 a 10. plot (Lags, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Chamado acfma1 (nossa escolha de nome). O comando de plotagem (o terceiro comando) traça defasagens em relação aos valores de ACF para os retornos de 1 a 10. O parâmetro ylab marca o eixo y eo parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF basta usar o comando acfma1. A simulação e as parcelas foram feitas com os seguintes comandos. Xcarima. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 adiciona 10 para fazer a média 10. Padrões de simulação significam 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF para dados de amostras simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt. 5 w t-1 .3 w t-2. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 parcela (lags, acfma2, xlimc (1,10), ylabr, tipoh, ACF principal para MA (2) com theta1 0,5, (X, typeb, main Simulado MA (2) Series) acf (x, xlimc (1,10), x2, MainACF para dados simulados de MA (2) Apêndice: Prova de Propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 (x) é a expressão anterior x (x) A razão é que, por definição de independência do wt. E (w k w j) 0 para qualquer k j. Além disso, porque w t tem média 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo MA reversível é aquele que pode ser escrito como um modelo de ordem infinita AR que converge de modo que os coeficientes AR convergem para 0 à medida que nos movemos infinitamente para trás no tempo. Bem demonstrar invertibilidade para o modelo MA (1). Substitui-se então a relação (2) para wt-1 na equação (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) No tempo t-2. A equação (2) torna-se Então substituimos a relação (4) para wt-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z-theta12z theta31w) Se continuássemos Infinitamente), obteríamos o modelo AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z pontos) Observe, no entanto, que se 1 1, os coeficientes multiplicando os desfasamentos de z aumentarão (infinitamente) Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo MA (1) invertible. Infinite Order MA model Na semana 3, bem ver que um modelo AR (1) pode ser convertido em um modelo de ordem infinita MA: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Esta soma de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos voltando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Lembre-se na Semana 1, observamos que um requisito para um AR estacionário (1) é que 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Esta última etapa usa um fato básico sobre séries geométricas que requer (phi1lt1) caso contrário, a série diverge. NavigationAutoregressive Moving-Average Simulation (Primeira Ordem) A Demonstração é definida de tal forma que a mesma série aleatória de pontos é usada não importa como as constantes e são variadas. No entanto, quando o botão quotrandomizequot é pressionado, uma nova série aleatória será gerada e usada. Manter a série aleatória idêntica permite ao usuário ver exatamente os efeitos na série ARMA de mudanças nas duas constantes. A constante é limitada a (-1,1) porque a divergência da série ARMA resulta quando. A Demonstração destina-se apenas a um processo de primeira ordem. Os termos AR adicionais permitiriam a geração de séries mais complexas, enquanto que os termos MA adicionais aumentariam o alisamento. Para uma descrição detalhada dos processos ARMA, ver, por exemplo, G. Box, G. M. Jenkins e G. Reinsel, Análise de séries temporais: Previsão e Controlo. 3a ed. Englewood Cliffs, NJ: Prentice-Hall, 1994. RELATED LINKSARMA Unplugged Esta é a primeira entrada da nossa série de tutoriais Unplugged, na qual examinamos os detalhes de cada um dos modelos de séries temporais com os quais você já está familiarizado, destacando o subjacente Suposições e dirigindo para casa as intuições por trás deles. Nesta edição, nós abordamos o modelo ARMA uma pedra angular na modelagem de séries temporais. Ao contrário de questões de análise anteriores, vamos começar aqui com a definição do processo ARMA, o estado das entradas, saídas, parâmetros, restrições de estabilidade, suposições e, finalmente, desenhar algumas orientações para o processo de modelagem. Por definição, a média móvel auto-regressiva (ARMA) é um processo estocástico estacionário composto por somas de Excel auto-regressivo e componentes de média móvel. Alternativamente, em uma formulação simples: Suposições Vamos olhar mais de perto a formulação. O processo ARMA é simplesmente uma soma ponderada das observações de saída anteriores e choques, com poucas suposições-chave: O que significam estas suposições Um processo estocástico é uma contrapartida de um processo determinista que descreve a evolução de uma variável aleatória ao longo do tempo. Em nosso caso, a variável aleatória é O processo ARMA captura apenas a correlação serial (ou seja, auto-correlação) entre as observações. Em palavras simples, o processo ARMA resume os valores de observações passadas, não seus valores quadrados ou seus logaritmos, etc. Dependência de ordem superior exige um processo diferente (por exemplo, ARCHGARCH, modelos não-lineares, etc.). Existem inúmeros exemplos de um processo estocástico em que valores passados ​​afetam os atuais. Por exemplo, em um escritório de vendas que recebe RFQs em uma base contínua, alguns são percebidos como vendas-ganhou, alguns como vendas perdidas, e alguns derramou em cima para o próximo mês. Como resultado, em qualquer mês, alguns dos casos de vendas ganhos originam-se como solicitações de cotação ou são vendas repetidas dos meses anteriores. Quais são os choques, inovações ou termos de erro Esta questão é difícil, ea resposta não é menos confusa. Ainda assim, vamos tentar: Em palavras simples, o termo de erro em um determinado modelo é um catch-all bucket para todas as variações que o modelo não explica. Ainda perdido Vamos usar um exemplo. Para um processo de preço de ações, há possivelmente centenas de fatores que levam o nível de preço atualizado, incluindo: Dividendos e anúncios divididos Relatórios de ganhos trimestrais Atividades de fusão e aquisição (MampA) Eventos jurídicos, p. A ameaça de ações coletivas. Outros Um modelo, por design, é uma simplificação de uma realidade complexa, então qualquer coisa que deixemos fora do modelo é automaticamente empacotada no termo de erro. O processo ARMA assume que o efeito coletivo de todos esses fatores age mais ou menos como ruído gaussiano. Por que nos preocupamos com os choques passados ​​Ao contrário de um modelo de regressão, a ocorrência de um estímulo (por exemplo, choque) pode ter um efeito no nível atual e, possivelmente, nos níveis futuros. Por exemplo, um evento corporativo (por exemplo, atividade da MampA) afeta o preço das ações da empresa, mas a mudança pode levar algum tempo para ter seu impacto total, já que os participantes do mercado absorvem as informações disponíveis e reagem de acordo. Isto implora a pergunta: não os valores passados ​​da saída já têm os choques informações passadas SIM, o histórico de choques já está contabilizado nos níveis de saída passados. Um modelo ARMA pode ser representado apenas como um modelo auto-regressivo puro (RA), mas o requisito de armazenamento de tal sistema em infinito. Esta é a única razão para incluir o componente MA: para economizar em armazenamento e simplificar a formulação. Novamente, o processo ARMA deve ser estacionário para que a variância marginal (incondicional) exista. Nota: Na minha discussão acima, não estou fazendo uma distinção entre meramente a ausência de uma raiz unitária na equação característica e a estacionaridade do processo. Eles estão relacionados, mas a ausência de uma raiz unitária não é uma garantia de estacionaridade. Ainda assim, a raiz unitária deve estar dentro do círculo da unidade para ser exata. Conclusão Vamos recapitular o que fizemos até agora. Primeiro examinamos um processo ARMA estacionário, juntamente com sua formulação, insumos, suposições e requisitos de armazenamento. Em seguida, mostrou que um processo ARMA incorpora seus valores de saída (auto-correlação) e choques que experimentou anteriormente na saída atual. Finalmente, mostramos que o processo ARMA estacionário produz uma série temporal com uma média e uma variância estáveis ​​a longo prazo. Em nossa análise de dados, antes de propormos um modelo ARMA, devemos verificar a suposição de estacionaridade e os requisitos de memória finita. No caso de a série de dados exibir uma tendência determinística, precisamos remover (des-tendência) em primeiro lugar e, em seguida, usar os resíduos para ARMA. Caso o conjunto de dados exiba uma tendência estocástica (por exemplo, caminhada aleatória) ou sazonalidade, precisamos entreter ARIMASARIMA. Finalmente, o correlograma (isto é, ACFPACF) pode ser usado para medir a necessidade de memória do modelo, devemos esperar que ACF ou PACF se decomponham rapidamente após alguns desfasamentos. Se não, isto pode ser um sinal de não estacionaridade ou um padrão de longo prazo (por exemplo, ARFIMA).

No comments:

Post a Comment